10-703 Spring 2017

Spring 2017

To current semester

Deep Reinforcement Learning & Control

/ Machine Learning /




Pre-requisites: None

Co-requisites: None

Units: 12.0

Instructors


Ruslan Salakhutdinov launch
Aikaterini Fragkiadaki launch

Description


This course will cover latest advances in Reinforcement Learning and Control, such as, deep Q learning, actor-critic methods, learning and planning, concurrent trajectory optimization and policy learning, inverse reinforcement learning, hierarchical reinforcement learning methods, forward predictive models, deep model predictive control, exploration strategies, adaptive control, applications to deep robotic learning. By the end of the course you should be able to: 1) code up a suitable reinforcement learning method in simulation or on robotic platform for a task 2) identify what are easy and hard problems in RL and learning for robotics The course will have a final project which will involve design of a reinforcement learning method in simulation or robotic platform. The homeworks will be in OpenAI gym. Pre-requisites: Students should have a basic background in algorithms, linear algebra, machine Learning, deep learning.

Lectures


   A

Pittsburgh, Pennsylvania

Ruslan Salakhutdinov
Aikaterini Fragkiadaki


today   Monday, Wednesday
access_time   From 3 p.m. to 4:20 p.m.
explore   Gates and Hillman Centers 4401

Ratings

FCE ratings and reviews on cmucoursereviews.me launch